问题标题:
综合与实践问题情境在综合与实践课上,老师让同学们以“菱形纸片的剪拼”为主题开展数学活动,如图1,将一张菱形纸片ABCD(∠BAC>90°)沿对角线AC剪开,得到△ABC和△ACD.操作发现
问题描述:
综合与实践
问题情境
在综合与实践课上,老师让同学们以“菱形纸片的剪拼”为主题开展数学活动,如图1,将一张菱形纸片ABCD(∠BAC>90°)沿对角线AC剪开,得到△ABC和△ACD.
操作发现
(1)将图1中的△ACD以A为旋转中心,逆时针方向旋转α,使α=∠BAC,得到如图2所示的△AC′D,分别延长BC和DC′交于点E,则四边形ACEC′的形状是___;
(2)将图1中的△ACD以A为旋转中心,按逆时针方向旋转△AC′D,使α=2∠BAC,得到如图3所示的△AC′D,连接DB,C′C,得到四边形BCC′D,发现它是矩形,请你证明这个结论;
(3)请你参照以上操作,将图1中的△ACD在同一平面内进行一次平移,得到△A′C′D′,在图4中画出平移后构造出的新图形,标明字母,说明平移的方法,并写出你发现的结论(不必证明).
孟颖悟回答:
(1)如图2,由题意可得:∠1=∠2,∠2=∠3,∠1=∠4,AC=AC′,∴AC′∥EC,AC∥C′E,∴四边形ACEC′是平行四边形,∴四边形ACEC′是菱形;故答案为:菱形;(2)证明:如图3,作AE⊥CC′于点E,由旋转得:AC′=A...
查看更多