问题标题:
【如图,已知△ABC是等腰直角三角形,∠C=90度.(1)操作并观察,如图,将三角板的45°角的顶点与点C重合,使这个角落在∠ACB的内部,两边分别与斜边AB交于E、F两点,然后将这个角绕着点C】
问题描述:

如图,已知△ABC是等腰直角三角形,∠C=90度.

(1)操作并观察,如图,将三角板的45°角的顶点与点C重合,使这个角落在∠ACB的内部,两边分别与斜边AB交于E、F两点,然后将这个角绕着点C在∠ACB的内部旋转,观察在点E、F的位置发生变化时,AE、EF、FB中最长线段是否始终是EF?写出观察结果.

(2)探索:AE、EF、FB这三条线段能否组成以EF为斜边的直角三角形?如果能,试加以证明.

邵亦陈回答:
  (1)观察结果是:当45°角的顶点与点C重合,并将这个角绕着点C在重合,并将这个角绕着点C在∠ACB内部旋转时,AE、EF、FB中最长线段始终是EF.(3分)(2)AE、EF、FB这三条线段能组成以EF为斜边的直角三角形.(4分...
查看更多
八字精批 八字合婚 八字起名 八字财运 2024运势 测终身运 姓名详批 结婚吉日
已出生未出生
数学推荐
热门数学推荐
付费后即可复制当前文章
《【如图,已知△ABC是等腰直角三角形,∠C=90度.(1)操作并观察,如图,将三角板的45°角的顶点与点C重合,使这个角落在∠ACB的内部,两边分别与斜边AB交于E、F两点,然后将这个角绕着点C】|小学数学问答-字典翻译问答网》
限时特价:5.99元/篇原价:20元