问题标题:
图形F1是等腰直角三角形.以它的直角顶点为旋转中心,把F1沿同一方向依次旋转90°,180°,270°,分别得到图形F2、F3和F4,则F1、F2、F3和F4组成的几何图形是()A.正方形B.菱形C..矩形D.
问题描述:
图形F1是等腰直角三角形.以它的直角顶点为旋转中心,把F1沿同一方向依次旋转90°,180°,270°,分别得到图形F2、F3和F4,则F1、F2、F3和F4组成的几何图形是()
A.正方形
B.菱形
C..矩形
D.等腰梯
寇保华回答:
设F1是等腰直角△OAB,
则∠ABO=∠BAO=45°,
进行第一次旋转,A旋转到B的位置,B旋转到C的位置,
则∠OBC=∠BAO=45°,
∴∠ABC=90°,
同理,可得旋转后得到的四边形四个角都是直角,
又∵根据旋转的性质可得四边相等.
∴F1、F2、F3和F4组成的几何图形是正方形.
故选A.
查看更多
八字精批
八字合婚
八字起名
八字财运
2024运势
测终身运
姓名详批
结婚吉日