问题标题:
如图,已知△ABC是等边三角形,D、E、F分别是射线BA、CB、AC上一点,且AD=BE=CF,连接DE、EF、DF.(1)求证:∠BDE=∠CEF;(2)试判断△DEF的形状,并简要说明理由.
问题描述:
如图,已知△ABC是等边三角形,D、E、F分别是射线BA、CB、AC上一点,且AD=BE=CF,连接DE、EF、DF.
(1)求证:∠BDE=∠CEF;
(2)试判断△DEF的形状,并简要说明理由.
李彩欣回答:
证明:(1)∵△ABC为等边三角形,且AD=BE=CF
又∵∠BAC=∠ABC=∠ACB=60°,
∴∠EBD=∠FCE,DB=CE,
在△BED与△CFE中,
DB=EC∠DBE=∠ECFBE=CF
查看更多