问题标题:
设函数f(x)=ex-ax-2(Ⅰ)求f(x)的单调区间(Ⅱ)若a=1,k为整数,且当x>0时,(x-k)f´(x)+x+1>0,求k的最大值.
问题描述:

设函数f(x)=ex-ax-2

(Ⅰ)求f(x)的单调区间

(Ⅱ)若a=1,k为整数,且当x>0时,(x-k) f´(x)+x+1>0,求k的最大值.

宁永怀回答:
  (I)函数f(x)=ex-ax-2的定义域是R,f′(x)=ex-a,   若a≤0,则f′(x)=ex-a≥0,所以函数f(x)=ex-ax-2在(-∞,+∞)上单调递增.   若a>0,则当x∈(-∞,lna)时,f′(x)=ex-a<0;当x∈(lna,+∞)时,f′(x)=ex-a>0;所以,f(x)在(-∞,lna)单调递减,在(lna,+∞)上单调递增.   (II)由于a=1,所以,(x-k) f´(x)+x+1=(x-k) (ex-1)+x+1   故当x>0时,(x-k) f´(x)+x+1>0等价于k<(x>0)①   令g(x)=,则g′(x)=   由(I)知,函数h(x)=ex-x-2在(0,+∞)上单调递增,而h(1)<0,h(2)>0,所以h(x)=ex-x-2在(0,+∞)上存在唯一的零点,故g′(x)在(0,+∞)上存在唯一的零点,设此零点为α,则有α∈(1,2)   当x∈(0,α)时,g′(x)<0;当x∈(α,+∞)时,g′(x)>0;所以g(x)在(0,+∞)上的最小值为g(α).又由g′(α)=0,可得eα=α+2所以g(α)=α+1∈(2,3)   由于①式等价于k<g(α),故整数k的最大值为2
查看更多
其它推荐
热门其它推荐