问题标题:
【高一数学必修一公式】
问题描述:

高一数学必修一公式

苏浩秦回答:
  三角函数公式   两角和公式sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosA   cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinB   tan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)   倍角公式tan2A=2tanA/(1-tan2A)ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a   半角公式sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA))ctg(A/2)=-√((1+cosA)/((1-cosA))   积化和差2sinAcosB=sin(A+B)+sin(A-B)   2cosAsinB=sin(A+B)-sin(A-B)   2cosAcosB=cos(A+B)-sin(A-B)   -2sinAsinB=cos(A+B)-cos(A-B)   和差化积sinA+sinB=2sin((A+B)/2)cos((A-B)/2   cosA+cosB=2cos((A+B)/2)sin((A-B)/2)   tanA+tanB=sin(A+B)/cosAcosB   tanA-tanB=sin(A-B)/cosAcosB   ctgA+ctgB=sin(A+B)/sinAsinB   -ctgA+ctgB=sin(A+B)/sinAsin   集合与函数概念   一,集合有关概念   1,集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素.   2,集合的中元素的三个特性:   1.元素的确定性;2.元素的互异性;3.元素的无序性   说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素.   (2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素.   (3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样.   (4)集合元素的三个特性使集合本身具有了确定性和整体性.   3,集合的表示:{…}如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}   1.用拉丁字母表示集合:a={我校的篮球队员},b={1,2,3,4,5}   2.集合的表示方法:列举法与描述法.   注意啊:常用数集及其记法:   非负整数集(即自然数集)记作:n   正整数集n*或n+整数集z有理数集q实数集r   关于"属于"的概念   集合的元素通常用小写的拉丁字母表示,如:a是集合a的元素,就说a属于集合a记作a∈a,相反,a不属于集合a记作a(a   列举法:把集合中的元素一一列举出来,然后用一个大括号括上.   描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法.用确定的条件表示某些对象是否属于这个集合的方法.   ①语言描述法:例:{不是直角三角形的三角形}   ②数学式子描述法:例:不等式x-3]2的解集是{x(r|x-3]2}或{x|x-3]2}   4,集合的分类:   1.有限集含有有限个元素的集合   2.无限集含有无限个元素的集合   3.空集不含任何元素的集合例:{x|x2=-5}   二,集合间的基本关系   1."包含"关系—子集   注意:有两种可能(1)a是b的一部分,;(2)a与b是同一集合.   反之:集合a不包含于集合b,或集合b不包含集合a,记作ab或ba   2."相等"关系(5≥5,且5≤5,则5=5)   实例:设a={x|x2-1=0}b={-1,1}"元素相同"   结论:对于两个集合a与b,如果集合a的任何一个元素都是集合b的元素,同时,集合b的任何一个元素都是集合a的元素,我们就说集合a等于集合b,即:a=b   ①任何一个集合是它本身的子集.a(a   ②真子集:如果a(b,且a(b那就说集合a是集合b的真子集,记作ab(或ba)   ③如果a(b,b(c,那么a(c   ④如果a(b同时b(a那么a=b   3.不含任何元素的集合叫做空集,记为φ   规定:空集是任何集合的子集,空集是任何非空集合的真子集.   三,集合的运算   1.交集的定义:一般地,由所有属于a且属于b的元素所组成的集合,叫做a,b的交集.   记作a∩b(读作"a交b"),即a∩b={x|x∈a,且x∈b}.   2,并集的定义:一般地,由所有属于集合a或属于集合b的元素所组成的集合,叫做a,b的并集.记作:a∪b(读作"a并b"),即a∪b={x|x∈a,或x∈b}.   3,交集与并集的性质:a∩a=a,a∩φ=φ,a∩b=b∩a,a∪a=a,a∪φ=a,a∪b=b∪a.   4,全集与补集   (1)补集:设s是一个集合,a是s的一个子集(即),由s中所有不属于a的元素组成的集合,叫做s中子集a的补集(或余集)   记作:csa即csa={x(x(s且x(a}   (2)全集:如果集合s含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集.通常用u来表示.   (3)性质:⑴cu(cua)=a⑵(cua)∩a=φ⑶(cua)∪a=u
查看更多
数学推荐
热门数学推荐