问题标题:
【解微方程根号下(1-y^2)*dx-根号下(1-x^2)*dy=0】
问题描述:
解微方程根号下(1-y^2)*dx-根号下(1-x^2)*dy=0
李少刚回答:
求解方程:[x√(1-y²)]dx+[y√(1-x²)]dy=0[y√(1-x²)]dy=-[x√(1-y²)]dx分离变量得ydy/√(1-y²)=-xdx/√(1-x²)取积分得:-(1/2)∫d(1-y²)/√(1-y²)=(1/2)∫d(1-x²)/√(1-x²)积分之得:-√(1-y²)=√(1-x²)+C即通解为:√(1-x²)+√(1-y²)+C=0
查看更多